Published Work
84. Srimanta Pakhira†, Wenhan Niu†, Guangming Cheng, Fang Zhao, Nan Yao, Jose L. Mendoza-Cortes, Bruce E. Koel 2024 Reaction-Driven Restructuring of Defective PtSe2 into Ultra-stable Catalyst for the Oxygen Reduction Reaction, Nature Materials, DOI: https://doi.org/10.1038/s41563-024-02020-w
Impact Factor: 41.2
Just Accepted (#Article ID: NM23061777C)
† Dr. Srimanta Pakhira (S.P.) and Dr. Wenhan Niu (W.N.) contributed equally to this manuscript.
83. Switi Dattatraya Kshirsagar†, Sandip Prabhakar Shelake†, Bapan Biswas, Ashok Singh, Srimanta Pakhira, Annadanam V. Sesha Sainath, Ujjawal Pal** 2024 In situ decoration of 2D-MoS2/ZIF-67 type II heterojunction for enhanced hydrogen production under simulated sunlight, Catalysis Today, 445, 115056. DOI: https://doi.org/10.1016/j.cattod.2024.115056
Impact Factor: 5.2 (Just Accepted)
** Corresponding Author
82. Lokesh Yadav, Srimanta Pakhira** 2024 Exploring and Elucidating the CO2 Reduction Mechanisms on the Surface of Two-Dimensional Nitrogen-vacancy (VN) Hexagonal Boron Nitride, Energy & Fuels,38,18800–18813. DOI: https://doi.org/10.1021/acs.energyfuels.4c02168
Impact Factor: 5.3 (Just Accepted)
ArXiv preprint, Cornell Library, Link: https://doi.org/10.48550/arXiv.2404.09340
** Corresponding Author
81. Himani Joshi and Srimanta Pakhira** 2024 Role of the Quantum Interactions in H2 Adsorption on Late Transition Metal Chelated Linkers of Covalent Organic Frameworks, ChemPhysChem, e202400237. DOI: https://doi.org/10.1002/cphc.202400237 Impact Factor: 3.5 (Just Accepted)
** Corresponding Author
80. Kahkasha Parveen and Srimanta Pakhira** 2024 Designing of Organic Bridging Linkers of Metal-Organic Frameworks for Enhanced Carbon Dioxide Adsorption, New Journal of Chemistry, 48, 13700-13714. DOI: https://doi.org/10.1039/D4NJ01197J Impact Factor: 3.925
** Corresponding Author
ArXiv preprint, Cornell Library, Link: https://doi.org/10.48550/arXiv.2307.04489
79. Himani Joshi and Srimanta Pakhira** 2024 Enhancement of H2 Physisorption in Covalent Organic Framework's Linkers by Li-Decoration, International Journal of Hydrogen Energy, 79, 1139-1154. DOI: https://doi.org/10.1016/j.ijhydene.2024.06.348 Impact Factor: 8.1
** Corresponding Author
78. Dikeshwar Halba and Srimanta Pakhira** 2024 Unraveling O2 Reduction Reaction on 2D Monolayer LaNiO3 Perovskite, ACS Omega, 9, 35614-35626. DOI: https://doi.org/10.1021/acsomega.4c03544 Impact Factor: 4.1
** Corresponding Author
77. Vikash Kumar, Dikeshwar Halba, Shrish Nath Upadhyay, Srimanta Pakhira** 2024 Electrocatalytic Performance of 2D Monolayer WSeTe Janus Transition Metal Dichalcogenide for Highly Efficient H2 Evolution Reaction, Langmuir, 40, 4872–14887. DOI: https://doi.org/10.1021/acs.langmuir.4c00867 Impact Factor: 4.331
** Corresponding Author
ArXiv preprint, Cornell Library, Link: https://doi.org/10.48550/arXiv.2306.15249
76. Ashok Singh and Srimanta Pakhira** 2024 Revealing the Mechanism and Activity of O2 Reduction Reaction of Co Nanocluster Encapsulated by Carbon Nanotube, Energy and Fuels, 38, 11837–11851. DOI: https://doi.org/10.1021/acs.energyfuels.4c01355 Impact Factor: 5.3
** Corresponding Author
75. Lalita Wagh, Devraj Singh, Vikash Kumar, Shrish Nath Upadhyay, Srimanta Pakhira and Apurba K. Das 2024 Sonication Induced Boladipeptide-based Metallogel as Efficient Electrocatalyst for Oxygen Evolution Reaction, ACS Applied Materials & Interfaces, 16, 28307–28318. DOI: https://doi.org/10.1021/acsami.3c18637 Impact Factor: 9.5
** Corresponding Author
74. Ashok Singh and Srimanta Pakhira** 2024 Synergistic Niobium Doped Two-Dimensional Zirconium Diselenide: An Efficient Electrocatalyst for O2 Reduction Reaction, ACS Physical Chemistry Au 4, 40–56. DOI: https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00035.
** Corresponding Author
73. Vikash Kumar and Srimanta Pakhira** 2024 2D Monolayer Molybdenum (IV) Telluride TMD: An Efficient Electrocatalyst for Hydrogen Evolution Reaction, ArXiv preprint, Cornell Library, Link: https://doi.org/10.48550/arXiv.2404.14810
72. Himani Joshi†, Nilima Sinha†, Kahkasha Parveen† and Srimanta Pakhira** 2023 Unveiling Electrocatalytic Activity of Cobaloxime Metallolinker in UU-100(Co) Metal-Organic Frameworks towards H2 Evolution Reaction: A DFT Study, Energy & Fuels 2023, 37, 19771–19784. DOI: https://doi.org/10.1021/acs.energyfuels.3c03013. Impact Factor: 5.3
** Corresponding Author
† Equal Contribution
71. Shrish Nath Upadhyay, Dikeshwar Halba, Lokesh Yadav and Srimanta Pakhira** 2023 Illuminating the role of Mo Defective 2D Monolayer MoTe2 towards highly efficient Electrocatalytic O2 Reduction Reaction, Langmuir, 39, 17700–17712. DOI: https://doi.org/10.1021/acs.langmuir.3c02166. Impact Factor: 4.331
** Corresponding Author
70. Lokesh Yadav and Srimanta Pakhira** 2023 Platinum-adsorbed Defective 2D Monolayer Boron Nitride: A Promising Electrocatalyst for O2 Reduction Reaction, Journal of Materials Chemistry C. 11, 15215-15232 Impact Factor: 8.1 DOI: https://doi.org/10.1039/D3TC02399K
** Corresponding Author
ArXiv preprint, Cornell Library, Link: Link: https://arxiv.org/abs/2306.15252
69. Vikash Kumar and Srimanta Pakhira** 2023 Mechanistic Understanding of Efficient Electrocatalytic Hydrogen Evolution Reaction on 2D Monolayer WSSe Janus Transition Metal Dichalcogenide, Molecular Systems Design & Engineering (MSDE), 8, 1060-1074, Impact Factor:4.920. DOI: https://doi.org/10.1039/D3ME00037K
** Corresponding Author
68. Andy D. Zapata-Escobar, Srimanta Pakhira, Joaquin Barroso-Flores, Gustavo A. Aucar** and Jose L. Mendoza-Cortes** 2023 Relativistic Quantum Calculations to Understand the Contribution of f-type Atomic Orbitals and Chemical Bonding of Actinides with Organic Ligands, Phys. Chem. Chem. Phys., 25, pp 5592-5601, Impact Factor:3.945.
DOI: https://doi.org/10.1039/D2CP05399C
** Corresponding Author
67. Ashok Singh and Srimanta Pakhira**, 2023 Unraveling the Electrocatalytic Activity of Platinum Doped Zirconium Disulfide Towards Oxygen Reduction Reaction, ACS Energy & Fuels, 37, pp 567-579, Impact Factor: 4.65,
DOI: https://doi.org/10.1021/acs.energyfuels.2c02831
** Corresponding Author
66. Samita Mishra, Shradha Sapru, Shrish Nath Upadhyay, Ashok Singh, Srimanta Pakhira** and Arijit K. De** 2023 Elucidating the Structure–Property Relationship and Ultrafast Exciton/Charge Carrier Dynamics of Layered Cs4CuSb2Cl12 Double-Perovskite Microcrystals, The Journal of Physical Chemistry, 127, pp 1881–1890, Impact Factor:4.177. DOI:https://doi.org/10.1021/acs.jpcc.2c07045
** Corresponding Author
65. Srimanta Pakhira** Vikash Kumar and Soumen Ghosh 2023 Revealing the Superior Electrocatalytic Performance of 2D Monolayer WSe2 Transition Metal Dichalcogenide for Efficient H2 Evolution Reaction, Advanced Materials Interfaces,10, pp 2202075, Impact Factor:6.389, DOI: https://doi.org/10.1002/admi.202202075
** Corresponding Author
64. Radha Nagraj, Rangaswamy Puttaswamy, Prahlad Yadav, Hemanth Beere, Shrish Nath Upadhyay, Nataraj Sanna Kotrappanavar, Srimanta Pakhira,** Debasis Ghosh, 2022 Aging responsive phase transition of VOOH to V10O24, nH2O vs. Zn2+ storage performance as rechargeable aqueous Zn-ion battery cathode, ACS Applied Materials & Interfaces, 14, pp 56886-56899, Impact Factor:10.383, DOI: https://doi.org/10.1021/acsami.2c18872
** Corresponding Author
63. Nilima Sinha, Himani Joshi and Srimanta Pakhira**, 2022 Lithium Intercalation in Covalent Organic Frameworks: A Porous Electrode Material for Lithium-Ion Battery, ACS Applied Electronic Materials, 4, pp 6237-6252, Impact Factor:4.494, DOI: https://doi.org/10.1021/acsaelm.2c01363
** Corresponding Author
62. Shrish Nath Upadhyay, Verma Bunty Sardar, Ashok Singh, Vikash Kumar and Srimanta Pakhira**, 2022 Elucidating the Oxygen Reduction Reaction Mechanism on the Surfaces of 2D Monolayer CsPbBr3 Perovskite, Physical Chemistry Chemical Physics, 24, pp 28283 - 28294, Impact Factor: 3.945, DOI:https://doi.org/10.1039/D2CP03432H
** Corresponding Author
61. Hemanth Kumar Beere, Srimanta Pakhira, Prahlad Yadav, Ashok Singh, Shrish Nath Upadhyay, Pooja B Naik, Nataraj Sanna Kotrappanavar, Debasis Ghosh, 2022 Realizing favorable synergism towards efficient hydrogen evolution reaction with heterojunction engineered Cu7S4 /CuS2 /NiS2 and functionalized carbon sheet heterostructures, Advanced Materials Interfaces, 9, pp 2201478, Impact Factor: 6.389 DOI: https://doi.org/10.1002/admi.202201478
60. Shrish Nath Upadhyay and Srimanta Pakhira** 2022 Nanostructured Pt-Doped 2D MoSe2: An Efficient Bifunctional Electrocatalyst for both Hydrogen Evolution and Oxygen Reduction Reactions, Physical Chemistry Chemical Physics, 24, pp 22823-22844, Impact Factor: 3.945 DOI: https://doi.org/10.1039/D2CP00924B
** Corresponding Author
59. Chandrabhan Patel, Ruchi Singh, Mayank Dubey, Sushil Kumar Pandey, Shrish Nath Upadhyay, Vikash Kumar, Sharath Sriram, Myo Than Htay, Srimanta Pakhira, Victor V. Atuchin and Shaibal Mukherjee** 2022 A synergistic recipe to produce uniform, large-sized single crystal of MoS2 monolayer via CVD for ppb-level NO2 sensing, ACS Applied Nano Materials, 7, pp 9415–9426, Impact Factor: 6.140, DOI: https://doi.org/10.1021/acsanm.2c01701
58. Nilima Sinha and Srimanta Pakhira** 2022 H2 Physisorption on Covalent Organic Framework Linkers and Metalated Linkers: A Strategy to Enhance Binding Strength, Molecular Systems Design & Engineering (MSDE), 7, pp 577-591, Impact Factor: 4.920, DOI: https://doi.org/10.1039/D1ME00166C
** Corresponding Author
ArXiv preprint, Cornell Library, Link: https://doi.org/10.48550/arXiv.2111.02720
57. Srimanta Pakhira** and Shrish Nath Upadhyay 2022 Efficient Electrocatalytic H2 Evolution Mediated by 2D Janus MoSSe Transition Metal Dichalcogenide Sustainable Energy & Fuels, 6, pp 1733-1752, Impact Factor: 6.813, DOI: https://doi.org/10.1039/D1SE02040D
** Corresponding Author
56. Nilima Sinha and Srimanta Pakhira** 2022 Hydrogen: A Future Chemical Fuel, Photoelectrochemical Hydrogen Generation. Materials Horizons: From Nature to Nanomaterials, Springer, pp 1-30, Book Chapter, DOI: https://doi.org/10.1007/978-981-16-7285-9_1
** Corresponding Author
55. Shrish Nath Upadhyay, Srimanta Pakhira** 2022 Electrochemical Water Splitting: H2 Evolution Reaction, Photoelectrochemical Hydrogen Generation. Materials Horizons: From Nature to Nanomaterials, Springer, pp 59-89, Book chapter, DOI: https://doi.org/10.1007/978-981-16-7285-9_1
** Corresponding Author
54. Pragti, Bidyut Kumar Kundu, Shrish Nath Upadhyay, Nilima Sinha, Rakesh Ganguly, Ivo Grabchev, Srimanta Pakhira**, Suman Mukhopadhyay** 2022 Pyrene based fluorescent Ru(II)-arene complexes towards significant biological applications: catalytic potential, DNA/protein binding, two-photon cell imaging and in vitro cytotoxicity, Dalton Transactions, 51, pp 3937-3953, Impact Factor: 4.569, DOI: https://doi.org/10.1039/D1DT04093F
** Corresponding Author
53. Joy Ekka, Shrish Nath Upadhyay, Frerich J. Keil and Srimanta Pakhira** 2022 Unveiling the Role of 2D Monolayer Mn-doped MoS2 Material: Toward an Efficient Electrocatalyst for H2 Evolution Reaction, Physical Chemistry Chemical Physics, 24, pp 265-280, Impact Factor: 3.945. DOI: https://doi.org/10.1039/D1CP04344G
** Corresponding Author
ArXiv preprint, Cornell Library, Link: https://doi.org/10.48550/arXiv.2111.02711
52. Srimanta Pakhira,† Yu Lei†, Kazunori Fujisawa, He Liu, Cynthia Guerrero-Bermea, Tianyi Zhang, Archi Dasgupta, Luis M. Martinez, Srinivasa Rao Singamaneni, Ke Wang, Jeff Shallenberger, Ana Laura Elías, Rodolfo Cruz-Silva, Morinobu Endo, Jose L. Mendoza-Cortes, Mauricio Terrones, 2021 Low-temperature activation of inert hexagonal boron nitride for metal deposition and single-atom catalysis, MaterialsToday, 51, pp 108-116, Impact Factor: 31.04 https://doi.org/10.1016/j.mattod.2021.09.017
†Equal Contribution: First Authorship.
51. Srimanta Pakhira,† Dharmarwardana, M.,† Welch, R. P., Narvaez, C. C., Luzuriaga, M. A., Arimilli, B. S., McCandless, G. T., Fahimi, B., Mendoza-Cortes, J. L., Gassensmith, J. J. 2021 Rapidly Reversibly Organic Crystalline Switch for Conversion of Heat into Mechanical Energy. Journal of The American Chemical Society (JACS). 143, pp 5951–5957, Impact Factor: 16.383. https://doi.org/10.1021/jacs.1c01549
†Equal Contribution: First Authorship.
50. Shrish Nath Upadhyay, Srimanta Pakhira* 2021 Mechanism of Electrochemical Oxygen Reduction Reaction at Two-Dimensional Pt-doped MoSe2 Material: An Efficient Electrocatalyst, Journal of Materials Chemistry C, 9, pp 11331-11342, Impact Factor: 8.067. DOI: 10.1039/D1TC02193A. https://doi.org/10.1039/D1TC02193A
49. Shrish Nath Upadhyay, Jena Akash Kumar Satrughna and Srimanta Pakhira** 2021 Recent Advancements of Two-Dimensional Transition Metal Dichalcogenides and Their Applications in Electrocatalysis and Energy Storage. Emergent Materials, 4, pp 951–970, Impact Factor: 3.8 DOI: http://dx.doi.org/10.1007/s42247-021-00241-2
** Corresponding Author
48. Chanchal Sonkar, Novina Malviya, Nilima Sinha, Attreyee Mukherjee, Srimanta Pakhira** and Suman Mukhopadhyay** 2021 Selective Anticancer Activities of Ruthenium(II)-Tetrazole Complexes and their Mechanistic Insights. Erratum/Correction, Biometal (BIOM), 34, pp. 795–812, Impact Factor: 3.378. DOI:https://doi.org/10.1007/s10534-021-00321-0
** Corresponding Author
47. Chanchal Sonkar, Novina Malviya, Nilima Sinha, Attreyee Mukherjee, Srimanta Pakhira* and Suman Mukhopadhyay** 2021 Selective Anticancer Activities of Ruthenium(II)-Tetrazole Complexes and their Mechanistic Insights. Biometal (BIOM), 34, pp. 795–812, Impact Factor: 3.378. https://doi.org/10.1007/s10534-021-00308-x
* Corresponding Author
46. Susmita Roy, Nilima Sinha, Srimanta Pakhira, Chanchal Chakraborty 2021 Generation of Emissive Nanosphere from Micro-Aggregates in Anionic Perylene Diimide: Co-relation of Self-Assembly, Emission, and Electrical Properties. Dyes and Pigments, 192, pp. 109461, Impact Factor: 5.122. https://doi.org/10.1016/j.dyepig.2021.109461
45. Rangaswamy Puttaswamy, Radha Nagaraj, Pranav Kulkarni, Hemanth Kumar Beere, Shrish Nath Upadhyay, R. Geetha Balakrishna, Nataraj Sanna Kotrappanavar, Srimanta Pakhira,** Debasis Ghosh** 2021 Constructing a High-Performance Aqueous Rechargeable Zincion Battery Cathode with Self-assembled Mat-like Packing of Intertwined Ag(I) Pre-inserted V3O7.H2O Microbelts with Reduced Graphene Oxide Core. ACS Sustainable Chemistry & Engineering. 9, pp 3985-3995, Impact Factor: 9.224. https://doi.org/10.1021/acssuschemeng.0c06147
** Corresponding Author
44. Sinha, N., Pakhira, S. ** 2021 Tunability of the Electronic Properties of Covalent Organic Frameworks. ACS Applied Electronic Materials, 3, pp. 720-732. Impact Factor: 4.494. https://doi.org/10.1021/acsaelm.0c00867
** Corresponding Author
43. Sonkar, C.; Malviya, N.; Ranjana, R.; Pakhira, S.; Mukhopadhyaya, S. 2020 Mechanistic Insight for Targeting Biomolecules by Ruthenium(II) NSAID Complexes. ACS Applied Bio Materials 3, pp. 4600-4612. https://doi.org/10.1021/acsabm.0c00501
42. Pakhira, S.,* Mendoza-Cortes, J. L., 2020 Quantum Nature in the Interaction of Molecular Hydrogen with Porous Materials: Implications for Practical Hydrogen Storage. The Journal of Physical Chemistry C 124, pp. 6454-6460. Impact Factor: 4.177. https://doi.org/10.1021/acs.jpcc.9b11939
** Corresponding Author
ArXiv preprint, Cornell Library, Link: https://doi.org/10.48550/arXiv.1912.10310
41. Nagaraj, R., Pakhira, S., Aruchamy, K., Yadav, P., Mondal, D., Dharmalingm, K., Kotrappanavar, K. S., Ghosh, D. 2020 Catalyzing the Intercalation Storage Capacity of Aqueous Zinc Ion Battery Constructed with Zn(II) Pre-Inserted Organo-Vanadyl Hybrid Cathode. ACS Appl. Energy Mater., 3, pp. 3425-3434. Impact Factor: 6.959. https://doi.org/10.1021/acsaem.9b02466
40. Pakhira, S.,† Liang, K., † Yang, Z., Nijamudheen, A., Ju, L., Wang, M., Aguirre-Velez, C.I., Sterbinsky, G. E., Du, Y., Feng, Z., Mendoza-Cortes, J. L., Yang, Y. 2019 S‑Doped MoP Nanoporous Layer Toward High-Efficiency Hydrogen Evolution in pH-Universal Electrolyte. ACS Catalysis, 9, pp. 651–659. Impact Factor: 13.700. https://doi.org/10.1021/acscatal.8b04291
†Equal Contribution: First Authorship.
39. Galley, S. S., Pattenaude, S. A., Gaggioli, C. A., Qiao, Y., Sperling, J. M., Zeller, M., Pakhira, S., Mendoza-Cortes, J. L., Schelter, E. J., Al-brecht-Schmitt, T. E., Gagliardi, L., Bart, S. C. 2019, Synthesis and Characterization of Tris-chelate Complexes for Under-standing f-orbital Bonding in Later Actinides. The Journal of American Chemical Society (JACS), 141, pp. 2356−2366. Impact Factor: 16.383. https://doi.org/10.1021/jacs.8b10251
38. Pradhan, N. R., Garcia, C., Lucking, M. C., Pakhira, S., Martinez, J., Rosenmann, D., Divan, R., Sumant, A. V., Terrones, H., Mendoza-Cortes, J. L., McGill, S. A., Zhigadlo, N. D., Balicas, L. 2019, Raman and Electrical Transport Properties of Few-Layered Arsenic-Doped Black Phosphorus. Nanoscale, 11, pp. 18449-18463. Impact Factor: 8.307. https://doi.org/10.1039/C9NR04598H
37. Pakhira, S., Mendoza-Cortes, J. L. 2019 Intercalation of First Row Transition Metals inside Covalent-Organic Frameworks (COFs): A Strategy to Fine Tune the Electronic Properties of Porous Crystalline Materials. Phys. Chem. Chem. Phys., 21, pp. 8785-8796. Impact Factor: 3.945. https://doi.org/10.1039/C8CP07396A
Link: https://doi.org/10.26434/chemrxiv.6712826.v1
36. Pakhira, S., ** 2019 Rotational Dynamics of the Organic Bridging Linkers in Metal-Organic Frameworks and Their Substituents Effects on Rotational Energy Barrier. RSC Advances, 9, pp. 38137-38147. Impact Factor: 4.036. https://doi.org/10.1039/C9RA01288E
** Corresponding Author
35. Torubaeva, Y. V., Rai, D. K., Skabitskii, I. V., Pakhira, S., Dmitrienko, A. 2019 Energy Framework Approach to the Supramolecular Reactions: Interplay of the Secondary Bonding Interaction in Ph2E2 (E=Se, Te) / p-I-C6F4-I Co-crystals. New J. Chem., 43, pp. 7941-7949. Impact Factor: 3.925. https://doi.org/10.1039/C9NJ00347A
34. Sinha, N., Deshpandey, I., Pakhira, S.,** 2019 Substituents Effects of Organic Linkers on Rotational Energy Barriers in Metal-Organic Frameworks. ChemistrySelect, 4, pp. 8584-8592. Impact Factor: 2.307. https://doi.org/10.1002/slct.201901278
** Corresponding Author
33. Pakhira, S.,† Niu, W.,† Marcus, K., Li, Z., Mendoza-Cortes, J.L., Yang., Y. 2018 Apically Dominant Mechanism for Improving Catalytic Activities of N-Doped Carbon Nanotube Arrays in Rechargeable Zinc-Air Battery. Advanced Energy Materials, 8, pp. 1800480. Impact Factor: 29.698. https://doi.org/10.1002/aenm.201800480
†Equal Contribution: First Authorship.
32. Pakhira, S.,† Hui, J.,† Schorr, N. B.,† Qu, Z. , Mendoza-Cortes, J. L., Rodríguez-López, J. 2018; Achieving Fast and Efficient K+ Intercalation on Ultrathin Graphene Electrodes Modified by a Li+ Based Solid-Electrolyte Interphase. The Journal of American Chemical Society (JACS), 140, pp. 13599−13603 . Impact Factor: 16.383. https://doi.org/10.1021/jacs.8b08907
†Equal Contribution: First Authorship.
31. Hui, J., Pakhira, S., Bhargava, R., Barton, Z. J., Zhou, X., Chinderle, A. J., Mendoza-Cortes, J.L., Rodríguez-López, J.; 2018 Modulating Electrocatalysis on Graphene Heterostructures: Physically Impermeable Yet Electronically Transparent Electrodes. ACS Nano 12, pp. 2980-2990. Impact Factor: 18.027. https://doi.org/10.1021/acsnano.8b00702
30. Pakhira, S., Mendoza-Cortes, J.L. 2018 Tuning the Dirac Cone of Bilayer and Bulk Structure Graphene by Intercalating First Row Transition Metals Using First-Principles Calculations. The Journal of Physical Chemistry C 122, pp. 4768–4782. Impact Factor: 4.805. https://doi.org/10.1021/acs.jpcc.7b11761
29. Pakhira, S.†, Ferrier, R. C. Jr.†, Palmon, S. E., Rodriguez, C. G., Goldfeld, D. E., Iyiola, O. O., Chwatko, M., Mendoza-Cortes, J. L., Lynd, N. A. 2018 Demystifying the Mechanism of Regio- and Isoselective Epoxide Polymerization Using the Vandenberg Catalyst. Macromolecules, 51, pp. 1777-1786. Impact Factor: 6.057. https://doi.org/10.1021/acs.macromol.7b02091
†Equal Contribution: First Authorship.
28. Pakhira, S., Lucht, K.P., Mendoza-Cortes, J.L. 2018 Dirac Cone in two dimensional bilayer graphene by intercalation with V, Nb, and Ta transition metals. The Journal of Chemical Physics, 148, pp. 064707. Impact Factor: 4.304. https://doi.org/10.1063/1.5008996
ArXiv preprint, Cornell Library, Link: https://doi.org/10.48550/arXiv.1704.08800
27. Sinha, L., Pakhira, S., Bhojane, P., Mali, S., Hong, C. K., Shirage, P. M. 2018 Hybridization of Co3O4 and α-MnO2 Nanostructures for the High Performance Nonenzymatic Glucose Sensing, ACS Sustainable Chemistry & Engineering, 6, pp. 13248−13261. Impact Factor: 9.224. https://doi.org/10.1021/acssuschemeng.8b02835
26. Pakhira, S.** 2018 Interactions between Metal Cations and H2 Molecule: A Mini Review for Strategies of Effective H2 Storage, Journal of Chemical Science and Engineering, 1, pp. 41-44. Impact Factor: NA. https://www.scitcentral.com/article/39/366/Interactions-between-Metal-Cations-and-H2-Molecule:-A-Mini-Review-for-Strategies-of-Effective-H2-Storage
** Corresponding Author.
25. Pakhira, S., Lucht, K.P., Mendoza-Cortes, J.L. 2017 Iron Intercalation in Covalent-Organic Frameworks: A Promising Approach for Semiconductors. The Journal of Physical Chemistry C 121, pp. 21160-21170. Impact Factor: 4.805. https://doi.org/10.1021/acs.jpcc.7b06617
ArXiv preprint, Cornell Library, Link: https://doi.org/10.48550/arXiv.1707.03277
24. Pradhan, N., Garcia, C., Martinez, J., Pakhira, S., Mendoza-Cortes, J.L., Terrones, H., Zhigadlo, N., McGill, S., Balicas, L. 2018 Electrical Transport Properties and Raman studies of few-layered Arsenic Doped Black Phosphorus Field-effect Transistor. Bulletin of the American Physical Society (Abstract). https://ui.adsabs.harvard.edu/abs/2018APS..MARK37003P/abstract
23. Pakhira, S.,† Garza, A. J.,† Bell, A. T., Mendoza-Cortes, J. L., Head-Gordon, M. 2018 Reaction Mechanism of the Selective Reduction of CO2 to CO by a Tetraaza [CoIIN4H]2+ Complex in the Presence of Protons. Phys. Chem. Chem. Phys., 20, pp. 24058. Impact Factor: 3.906.
†Equal Contribution: First Authorship. https://doi.org/10.1039/C8CP01963K
ArXiv preprint, Cornell Library, Link: https://doi.org/10.48550/arXiv.1803.09907
22. Pakhira,† S., Lei†, Yu., Fujisawa, K., Wang, X., Iyiola, O., López, N., Elías, A., Rajukumar, L., Zhou, C., Kabius, B., Alem, N., Endo, M., Lv, R., Mendoza-Cortes, J. and Terrones, M. 2017 Low Temperature Synthesis of Heterostructures of Transition metal Dichalcogenides Alloys (WxMo1-xS2) and Graphene with Superior Catalytic Performance for Hydrogen Evolution. ACS Nano 11, pp. 5103-5112. (Cover Article) Impact Factor: 18.027
†Equal Contribution: First Authorship. https://doi.org/10.1021/acsnano.7b02060
ArXiv preprint, Cornell Library, Link: https://doi.org/10.48550/arXiv.1703.08597
21. Pakhira, S., Lucht, K.P., Mendoza-Cortes, J.L. 2017 Iron Intercalated Covalent-Organic Frameworks: First Crystalline Porous Thermoelectric Materials. arXiv preprint arXiv:1703.02613. Link: https://doi.org/10.48550/arXiv.1703.02613
20. Pakhira, S., Lucht, K.P., Mendoza-Cortes, J.L. 2016 An Alternative Strategy to Control the Electronic Properties of Bilayer Graphene: Semi-metal to Metal Transition and a Rare 2D Material with Dirac Cone. arXiv preprint arXiv:1610.04777. Link: https://doi.org/10.48550/arXiv.1610.04777
19. Pakhira, S., Sing, R., Olatunji-Ojo, O., Frenklach, M., Lester Jr., W. A. 2016 A QMC Study of the Reactions of CH with Acrolein: Major and Minor Channels. The Journal of Physical Chemistry A 120, pp.3602-3612. Impact Factor: 2.944. https://doi.org/10.1021/acs.jpca.5b11527
18. Pakhira, S., Sen, K, Debnath, T. and Das, A. K., 2016. Binding Affinity of the Metal Cations (Ni+, Cu+ and Zn+) towards Molecular Hydrogen: A Computational Study. Journal of Chemical Science 128, pp. 624-631. Impact Factor: 2.150. https://doi.org/10.1016/j.scient.2011.09.015
17. Pakhira, S., Takayanagi, M. and Nagaoka, M., 2015. Diverse Rotational Flexibility of Substituted Dicarboxylate Ligands in Functional Porous Coordination Polymers. The Journal of Physical Chemistry C, 119, pp.28789-28799. Impact Factor: 4.805. https://doi.org/10.1021/acs.jpcc.5b10393
16. Takayanagi, M., Pakhira, S. and Nagaoka, M., 2015. Control of Diffusion and Conformation Behavior of Methyl Methacrylate Monomer by Phenylene Fin in Porous Coordination Polymers. The Journal of Physical Chemistry C, 119, pp.27291-27297. Impact Factor: 4.805. https://doi.org/10.1021/acs.jpcc.5b09332
15. Pakhira, S., Lengeling, B.S., Olatunji-Ojo, O., Caffarel, M., Frenklach, M. and Lester Jr, W.A., 2015. A Quantum Monte Carlo Study of the Reactions of CH with Acrolein. The Journal of Physical Chemistry A, 119, pp.4214-4223. Impact Factor: 2.944. https://doi.org/10.1021/acs.jpca.5b11527
14. Pakhira, S., Debnath, T., Sen, K. and Das, A.K., 2015. Role of Double-Hybrid Density Functionals and Correlation Consistent Basis Sets in OCS-Hydrocarbon Complexes. Indian Journal of Chemistry, 54, pp.1369-1377. Impact Factor: 0.412. http://nopr.niscpr.res.in/handle/123456789/33424
13. Sen, K., Pakhira, S., Sahu, C. and Das, A.K., 2014. Theoretical Study of Efficiency of Metal Cations (Mg+, Ca+, and Ag+) for Effective Hydrogen Storage. Molecular Physics, 112, pp.182-188. Impact Factor: 1.937. https://doi.org/10.1080/00268976.2013.805849
12. Pakhira, S., Sahu, C., Sen, K. and Das, A.K., 2013. Dispersion Corrected Double Hybrid and Gradient-Corrected Density Functional Theory Study of Light Cation–Dihydrogen (M+–H2, where M= Li, Na, B and Al) van der Waals Complexes. Structural Chemistry, 24, pp.549-558. Impact Factor: 1.795. https://doi.org/10.1007/s11224-012-0107-y
11. Pakhira, S., Sen, K., Sahu, C. and Das, A.K., 2013. Performance of Dispersion-Corrected Double Hybrid Density Functional Theory: A Computational Study of OCS-Hydrocarbon van der Waals Complexes. The Journal of Chemical Physics, 138, pp.164319. Impact Factor: 4.304. https://doi.org/10.1063/1.4802247
10. Sahu, C., Pakhira, S., Sen, K., and Das, A. K., 2013. A Computational Study of Detoxification of Lewisite Warfare Agents by British Anti-lewisite: Catalytic Effects of Water and Ammonia on Reaction Mechanism and Kinetics. The Journal of Physical Chemistry A 117, 3496-3506. Impact Factor: 2.883. https://doi.org/10.1021/jp312254z
9. Sahu, C., Sen, K., Pakhira, S., Mondal, B. and Das, A.K., 2013. Binding Affinity of Substituted Ureido‐Benzenesulfonamide Ligands to the Carbonic Anhydrase Receptor: A Theoretical Study of Enzyme Inhibition. Journal of Computational Chemistry, 34, pp.1907-1916. Impact Factor: 3.672. https://doi.org/10.1002/jcc.23335
8. Sen, K., Mondal, B., Pakhira, S., Sahu, C., Ghosh, D. and Das, A.K., 2013. Association Reaction between SiH3 and H2O2: A Computational Study of the Reaction Mechanism and Kinetics. Theoretical Chemistry Accounts, 132, pp.1375 . Impact Factor: 2.154. https://doi.org/10.1007/s00214-013-1375-3
7. Sen, K., Ghosh, D., Pakhira, S., Banu, T. and Das, A.K., 2013. Structure, Stability, and Dissociation of Small Ionic Silicon Oxide Clusters [SiOn+ (n= 3, 4)]: Insight from Density Functional and Topological Exploration. The Journal of Chemical Physics, 139, pp.234303. Impact Factor: 4.304. https://doi.org/10.1063/1.4840455
6. Pakhira, S., Mandal, D., Mondal, B. and Das, A.K., 2012. Theoretical study of Spectroscopy, Interaction, and Dissociation of Linear and T-Shaped Isomers of RgClF (Rg= He, Ne, and Ar) van der Waals Complexes. Structural Chemistry, 23, pp.681-692. Impact Factor: 1.795. https://doi.org/10.1007/s11224-011-9914-9
5. Pakhira, S. and Das, A.K., 2012. Spectroscopic Properties, Potential Energy Surfaces and Interaction Energies of RgClF (Rg= Kr and Xe) van der Waals Complexes. The European Physical Journal D, 66, pp.1- 11. Impact Factor: 1.611. https://doi.org/10.1140/epjd/e2012-30110-9
4. Pakhira, S., Sahu, C., Sen, K. and Das, A.K., 2012. Can Two T-Shaped Isomers of OCS–C2H2 van der Waals Complex Exist? Chemical Physics Letters, 549, pp.6-11. Impact Factor: 2.719. https://doi.org/10.1016/j.cplett.2012.08.043
3. Pakhira, S., Mondal, B. and Das, A.K., 2011. Spectroscopic Properties of I2–Rg (Rg = He, Ne, Ar) van der Waals Complexes. Chemical Physics Letters, 505, pp.81-86. Impact Factor: 2.719. https://doi.org/10.1016/j.cplett.2011.01.062
2. Pakhira, S., Bera, N.C. and Das, A.K., 2011. Coupled Cluster Study of Structural Properties of RgI and RgI− (Rg= He, Ne, Ar) Weakly Bound Molecules. Structural Chemistry, 22, pp.893-900. Impact Factor: 1.795. https://doi.org/10.1007/s11224-011-9763-6
1. Pakhira, S. and Das, A.K., 2011. Spectroscopy and Dissociation of I2–Rg (Rg = Kr and Xe) van der Waals Complexes. Theoretical Chemistry Accounts, 130, pp.95-101. Impact Factor:2.154. https://doi.org/10.1007/s00214-011-0978-9